学好网首页

中小学辅导教育平台

400 966 0702

服务时间:服务时间:7:00-23:00

当前位置:学好网 > 辅导资料 > 高中辅导资料 > 高三辅导资料 > 高三数学资料
2016年高考各科复习知识点请查看

2016年高考各科复习知识点请查看

  • 发布时间:2023-10-26 22:18:47
培训区域全国 辅导科目全科
授课形式辅导 适用学员小初高学生
咨询电话400 966 0702
课程介绍 课程内容

函数的奇偶性

友情提醒:由于网站宽度的限制,上传文本可能会出现页面排版混乱,如果点击下载或全屏查看更好。

知识点概述

1. 理解函数的奇偶性及其几何意义; 

2. 学会判断函数的奇偶性; 

3. 学习运用函数图像来理解和研究函数的性质.

一、定义

对于函数f(x),如果定义域内的任何x都有f,(-x)=-f(x),那么f(x)为奇函数;

对于函数f(x),如果定义域内的任何x都有f,(-x)=f(x),那么f(x)为偶函数;

奇迹函数:关于原点对称。(做题时可以考虑特殊值法),f(0)=0)。F(-x)= -f(x)

偶函数:关于y轴对称。F(-x)=f(x)

学好网小编整理了高中语言、政治、历史、地方、物化生九个科目的知识点。所有科目的知识点都包括知识主题、学习方法、解决问题的技能等内容。更多2016年高考各科复习知识点请查看<<<高中总站>>>( http://www.gaosan.com/zt/zhishidian.html#),高考知识点频道有你想要的珍贵复习材料。高考生专属网站欢迎访问学好网。

二、函数f(x)的奇偶性

(1)函数定义域中的任何x都有f(-x)=-f(x),那么函数f(x)叫奇函数。

(2)如果函数定义域中的任何一个x都有f,(-x)=f(x),那么函数f(x)称为偶函数。

(3)函数定义域中的任何x,f(-x)=-f(x)与f(-x)=f(x)同时成立,然后函数f(x)它既是奇函数又是偶函数,称为既奇又偶函数。

(4)函数定义域中的任何x,f(-x)=-f(x)与f(-x)=f(x)如果不能建立函数f,那么函数f(x)既不是奇函数也不是偶函数,称为非奇非偶函数。

说明:①对于整个定义域来说,奇、偶性是函数的整体性质

②奇、偶函数的定义域必须是关于原点对称的,如果一个函数的定义域不是关于原点对称的,那么这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检查其定义域是否关于原点对称,然后严格按照奇偶性的定义简化、整理、与f相匹配(x)比较得出结论)

③判断或证明函数是否奇偶的依据是定义

三、性质

  (1)函数按奇偶性分类可分为:奇函数非偶函数、偶函数非奇函数、既奇又偶函数、非奇非偶函数;

  (2) f(x),g(x)D的定义域;

  (3)图像特征:奇函数图像对称原点;偶函数图像对称原点;

  (4)定义域对称原点是函数具有奇偶性的必要条件和不足条件,奇函数f(x)如果在原点上有定义,则有f(0)=0;

  (5)任何定义域关于原点对称的函数f(x)一般可以表示为奇函数与偶函数之和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;

  (6)奇函数在原点对称范围内具有相同的单调性,偶函数在原点对称范围内具有相反的单调性。

四、奇偶函数图像的特征

对原点成中心对称图表的定理奇函数图像,对y轴或轴对称图形的偶函数图像。

f(x)为奇函数《==》f(x)关于原点对称的图像

点(x,y)→(-x,-y)

奇函数在一定范围内单调递增,在其对称范围内单调递增。

偶数在一定范围内单调递增,在其对称范围内单调递减。

五、奇偶函数运算

(1)两个偶函数加起来的和为偶函数。

(2)两个奇函数加起来的和为奇函数。

(3)一个偶函数与一个奇函数相加得到的和是非奇函数和非偶函数。

(4)两个偶函数相乘得到的积为偶函数。

(5)两个奇函数相乘得到的积为偶函数。

(6)一个偶函数与一个奇函数相乘得到的积为奇函数。

六、扩展

  (1)一般来说,对于函数y=f(x),定义域内每个自变量x都有f(a+x)=2b-f(a-x),则y=f(x)关于点的图像(a,b)中心对称;

  (2)一般来说,函数y=f(x),定义域内每个自变量x都有f(a+x)=f(a-x),它的图像是x=a成轴对称。
http://www.yixuela.com/uploads/allimg/130815/1-130Q520595D43.png
利用函数的奇偶性求值
http://www.yixuela.com/uploads/allimg/130815/1-130Q5210145M7.png
利用函数的奇偶性和单调性比较值
http://www.yixuela.com/uploads/allimg/130815/1-130Q521015CV.png
利用奇偶性求函数分析
http://www.yixuela.com/uploads/allimg/130815/1-130Q5210244607.png 

 

点击查看更多高三数学资料资讯
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码