数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列、等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。我们今天就一起来回顾一下等差等比数列求和公式(解惑)
等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。等差数列求和公式:Sn=na1+n(n-1)d/2。
通项公式an=a1×q^(n-1) 求和公式a1(1-q^n)/(1-q) Sn=a1(1-q^n)/(1-q)(q≠1) 求和公式推导 (1)Sn=a1+a2+a3+...+an(公比为q) (2)qSn=a1q+a2q+a3q+...+anq=a2+a3+a4+...+an+a(n+1) (3)Sn-qSn=(1-q)Sn=a1-a(n+1) (4)a(n+1)=a1q^n (5)Sn=a1(1-qn)/(1-q)(q≠1) Sn=n(a1+an)/2 Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n 末项=首项+(项数-1)×公差 项数=(末项-首项)&pide;公差+1 首项=末项-(项数-1)×公差 和=(首项+末项)×项数&pide;2 末项:比较后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和 等差等比数列求和公式小兵就先为大家讲解到这里了,希望可以帮到你些,若还有更多疑问,可以点击右下角咨询哦!我相信,每个同学都想向张海迪一样,努力勤奋,为祖国做出贡献。其实,这并不难,在我们学习气馁的时候,不要灰心,记住,风雨过后总是彩虹!在我们学习突飞猛进的时候,不要骄傲,记住,虚心使人进步,骄傲使人落后