一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即".
5.判断命题的真假关键是“抓住关联字词”注意:“不或’即且’,不且’即‘或’".
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即段,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“逆”者交换’也”、“否”者否定’也".
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果。
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题"L.
8.充要条件
二、函数
1.指数式、对数式,
2.(1)映射是”全部射出加‘一箭一雕’";映射中个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.
(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等对于偶函数而言有:.
(2)若奇函数定义域中有0,则必有,即的定义域时,是为奇函数的必要非充分条件。
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;
在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).
(5)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”复合函数要考虑定义域的变化。(即复合有意义)