学好网首页

中小学辅导教育平台

400 966 0702

服务时间:7:00-23:00

当前位置:学好网 > 问答中心 > 问答中心

初中七年级数学教案优秀10篇

文章来源: 管理员 作者: yongbin 发布时间:2023-06-15 01:01:53 阅读:

作为一名教职工,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。写教案需要注意哪些格式呢?下面是白话文的小编为您带来的初中七年级数学教案优秀10篇,如果能帮助到您,小编的一切努力都是值得的。


七年级数学教案 篇一

《整式的加减》教案

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题:

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t—120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60


初中七年级数学教案 篇二

一、教学内容分析

1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于有效之值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

二、学生学习情况分析

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

三、设计思想

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

四、教学目标

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

五、教学及难点

1、:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

六、教学建议

1、、难点分析

本节的是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

七、学法引导

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

八、课时安排

1课时

九、教具学具准备

电脑、投影仪、三角板

十、师生互动活动设计

讲授新课

(出示投影1)

问题1:三个温度计,其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃。

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零。具体方法如下

(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?

原点向左1.5个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

位长度的直线叫做数轴。

进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

【教法说明】

通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3)。画出数轴并表示下列有理数:

1、1.5,-2.2,-2.5,,,0.

2、写出数轴上点A,B,C,D,E所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

【教法说明】

此组练习的目的是巩固数轴的概念。

十一、小结

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

十二、课后练习习题1.2第2题

十三、教学反思

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。


七年级数学教案 篇三

一、素质教育目标

(一)知识教学点

1.使学生理解近似数和有效数字的意义

2.给一个近似数,能说出它准确到哪一痊,它有几个有效数字

3.使学生了解近似数和有效数字是在实践中产生的.

(二)能力训练点

通过说出一个近似数的准确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

(三)德育渗透点

通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

(四)美育渗透点

由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

二、学法引导

1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

三、、难点、疑点及解决办法

1.:理解近似数的准确度和有效数字.

2.难点:正确把握一个近似数的准确度及它的有效数字的个数.

3.疑点:用科学记数法表示的近似数的准确度和有效数字的个数.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片

六、师生互动活动设计

教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出准确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

七、教学步骤

(一)提出问题,创设情境

师:有10千克苹果,平均分给3个人,应该怎样分?

生:平均每人千克

师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

生:不能

师:哪怎么分

生:取近似值

师:板书课题

【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

(二)探索新知,讲授新课

师出示投影1

下列实际问题中出现的数,哪些是准确数,哪些是近似数.

(1)初一(1)有55名同学

(2)地球的半径约为6370千米

(3)中华人民共和国现在有31个省级行政单位

(4)小明的身高接近1.6米

学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.

师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

以开始提出的问题为例,揭示近似数的有关概念

板书:

1.准确度

2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数准确到哪一位,这时,从左边首要个不是0的数字起,到准确的数位止,所有的数字,都叫做这个数的有效数字.

例如:3.3有二个有效数字

3.33有三个有效数字

讨论:近似数0.038有几个有效数字,0.03080呢?

【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边首要个不是零的数起;二是从左边首要个不是零的数起,到准确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

例1.(出示投影2)

下列由四舍五入吸到近似数,各准确到哪一位,各有哪几个有效数字?

(1)43.8(2)。03086(3)2.4万

学生口述解题过程,教者板书.

对于近似数2.4万学生又能认为是准确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

巩固练习见课本122页练习2、3页

例2(出示投影3)

下列由四舍五入得来的近似数,各准确到哪一位,各有几个有效数字?


簇新七年级数学教案 篇四

一、教学思想:

深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题转化为数学问题并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教学目标:

1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

2、知识与技能:掌握初中数学教材、数学学科“基本要求”的知识点。

3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。

三、教学措施

1、认真学习钻研新课标,掌握教材,编写好“教案”。

2、认真备课,争取充分掌握学生动态。

3、认真上好每一堂课。

创设教学情境,激发学习兴趣,充分用足用好40分钟。爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以努力学习就会有回报课堂教学质量。

4、落实每一堂课后辅助,查漏补缺。

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

5、积极与其它老师沟通,加强教研,提高教学水平。

6、经常听取学生良好的合理化建议。

7、深化两极生的训导。

8、落实帮教措施。

总之通过做好教学工作的每一环节,尽的努力,想出各种有效的办法,以提高教学质量。


七年级数学教案 篇五

教学内容

人教二年级下册教材第59~60页例1及第60页“做一做”。

内容简析

例1借助平均分物的操作活动,先进行恰好分完的操作活动,并用除法算式表示出来;再进行有剩余的操作活动,通过对比使学生体会其异同,帮助学生理解有剩余的情况,并用除法算式表示。通过与表内除法的对比,使学生理解余数及有余数的除法的含义。

教学目标

1、结合具体情境,经历认识余数的过程,理解有余数除法的意义。

2、通过主题图教学,让学生知道计算问题是从生活实际中产生,体会到生活中处处有数学。

3、培养学生的学习兴趣及初步的观察、概括能力。

教学

理解余数及有余数除法的含义,能够准确求出余数。

教法与学法

1、本课时运用自主学习法,引导学生通过摆草莓的操作活动,使学生经历把物品平均分后有剩余的现象,抽象为有余数的除法的过程,理解有余数除法的含义。

2、本课时学生的学习主要是通过总结、归纳、抽象、概括等方法来学习。承前启后链

教学过程

一、情景创设,导入课题

故事描写法:周末小熊打算请2个好朋友到他家做客,加上小熊一共3人,他想请大家一起吃草莓。可是他打开冰箱一看,发现只有7个草莓,3人怎么分7个草莓呢?他很苦恼。聪明的小朋友们,你们知道他为什么苦恼吗?谁能来说一说?(不能把草莓平均分完)这就是我们今天要共同探究的内容——有余数的除法(板书)。【品析:把教材中的情景进行了改编,增加了课堂的趣味,吸引了学生的注意力,为新知教学做了充分的准备。】活动导入法:请同学们拿出10个小圆片。

①把10个圆片平均分成2份,每份有几个?

②把10个圆片平均分成3份,每份有几个?

(学生说法不一:有的说不能分,有的说分不出来)

这样的问题究竟应该怎样解决呢?这就是今天我们要学习的新内容,有余数的除法。(板书课题:有余数的除法)【品析:活动导入,让学生动手操作,每个学生都参与其中并思考没有刚好分完怎么办?于是激发了学生强烈的求知欲望,随着老师的引导进入新知的学习中。】

二、师生合作,探究新知

1、复习表内除法的意义。

平常我们分东西,有时候能正好平均分完,有时候不能正好分完,剩下的又不够再分。剩下不够再分的数就叫余数,这节课我们就一起来学习“有余数的除法”(出示课题)。

(1)课件出示6个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

(2)学生交流获取信息。

(3)利用学具实际操作。

(4)用算式表示操作的过程。课件出示6个草莓摆放的结果图:

(5)小组内说说6÷2=3(盘),这个算式表示的意思。【品析:沟通操作过程、算式、语言表达之间的转换,使学生明白它们的意思是一样的,只是表达的形式不同。】2、理解有余数除法的含义。

(1)在动手操作中感受平均分时会出现有剩余的情况。

①课件出示7个草莓图:把下面这些草莓每2个摆一盘,摆一摆。

②学生利用学具操作。

③交流发现的问题:剩下一个草莓。

(2)在交流中确定表示平均分时有剩余的方法。

①学生用算式表示刚才摆的过程,教师巡视,选取典型案例。

②教师板书规范写法:

7÷2=3(盘)……1(个)

余数

③读作:7除以2等于3余1。写法:首先在等号的右面写商,然后点上6个小圆点再写上余数。

④交流算式表示的意思,7、3、2、1各表示什么?明确“1”是剩下的草莓数,我们把它叫余数。

(3)归纳总结,完善学生的认知结构。

①比较两次分草莓的相同点和不同点。②教师随学生的回答,用课件呈现下表。

分的物品几个一份分的结果算式表达

6个草莓每2个一盘分了3盘,正好分完6÷2=3(盘)

7个草莓每2个一盘分了3盘,还剩1个7÷2=3(盘)……1(个)

?品析:充分调动学生已有的经验,通过摆学具的直观方式让学生在与表内除法的对比中,理解余数及有余数除法的含义,给学生创设自主构建知识的空间。】

三、反馈质疑,学有所得

在学习完例1的基础上,指引学生及时消化吸收,请学生同桌之间互相叙述余数和有余数除法的含义。然后教师提出质疑问题,指引学生在解决问题的过程中,学会系统整理。

质疑一:什么是余数?余数的单位名称是什么?

学生讨论后归纳:当平均分一些物品有剩余且不够再分的时候,剩余的数叫余数。余数的单位名称和被除数的单位名称相同。

质疑二:什么是有余数的除法?

学生讨论后总结:带有余数的除法就是有余数的除法。

四、课末小结,融会贯通

本节课中,你有什么收获?聪明的你能帮老师简单总结一下刚刚我们都学习了哪些内容吗?

“本节课中,我们明白了平均分后有剩余可以用有余数的除法算式表示。也知道余数的单位名称和被除数的单位名称一样。”

五、教海拾遗,反思提升

本节课,我使用故事导入,通过小熊分草莓招待客人,草莓有剩余的情况,唤醒学生的生活经验,

让他们初步感受到余数就在自己的身边,体会余数的意义。

打破原有教学模式,组织学生开展自主、合作、探究的学习活动。老师和学生是平等的对话关系,真正把主体地位还给学生。当出示问题时,先让学生自己独立尝试分一分,在小组内交流自己是怎样做的,怎样想的,这样给学生充分的思考空间,让每个学生都能在趣味中学习,享受到成功的喜悦。


初中七年级数学教案 篇六

一、基本情况分析

1、学生情况分析:

本学期我继续承担七(1)(2)两班的数学教学,两班学生进行了一个学期的学习,虽然试成绩可以,但是发现两班学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间几何训练,培养学生良好的学习习惯。全面提生的数学素质。

2、教材分析:

第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。

第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系

第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。有序实数对与平面直角坐标系的点一一对应的关系。本章:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。

第八章、二元一次方程组:本章主要学习二元一次议程(组)及其解的概念和解法与应用。本章:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。

第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。

第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。

二、教学目标和要求

(一)知识与技能

1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1、采用思考、类比、探究、归纳、得出结论的方法进行教学;

2、发挥学生的主体作用,作好探究性活动;

3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力。

(三)情感态度与价值观

1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

三、提高教学质量的主要措施

1、本学期教学工作仍然是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。所以要抓好课前备课,这就要求我要认真研究教材,把握每节课的教学和难点,课堂上注重教学方法,努力让不同的学生都学到有用的数学。

2、依据课程标准、教材要求和学生实际,设计出突出,突破难点,解决关键的整体优化教学方法。教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力、思维能力和解决问题的能力。采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等,增加学习主动性和学习兴趣,体现学生的主体性。教学过程中尽量采取多鼓励、多引导、少批评的教育方法。这样通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。

3、根据学生的不同学习状况,给不同的学生布置不同的作业,对于学习比较的学生,给他们留一些与课堂教学内容相关的基础性的作业,检验他们对当堂教学内容的掌握情况;对于学习成绩比较好的学生,留一些综合运用或拓展能力方面的作业,检查他们对知识的灵活运用和综合运用情况。

4、利用课堂教学培养学生养成良好的学习习惯。要求学生课前自学,通过预习“我”知道了什么,还有什么不知道或还有什么我看不懂,在书上做出记号。以便上课时听讲。课堂上,要求学生养成良好的听课习惯:课前做好上课的准备,听课时要集中精神,专心听讲,积极思考问题,认真回答问题,不懂的及时提出来。要求课后养成复习的习惯,每天都要把所学的知识进行复习,可在头脑中回顾当天所学知识,对于忘掉的或回想不起来的,可翻书重新记忆。另外,隔段时间还要把前面所学的知识再行回顾,以免时间长了忘记了。要求学生每天认真完成作业,作业要书写工整,解题规范,杜绝抄袭现象,使学生养成良好的做作业习惯。

5、关注待进生,不歧视待进生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或课外活动时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。

6、辅导补差。对于中上等生,利用课后阅读材料和课外资料丰富他们的头脑,增加他们的知识面,通过专题训练,提高他们的综合分析问题的能力和解决问题的能力。鼓励他们利用课余时间通过课外资料或上网学习等方式拓宽他们知识面和视野,不懂就问,养成勤学好问的习惯,以提高他们的各方面的能力。对于待进生多关心和帮助,在课堂上多提问他们一些简单的问题,多鼓励他们,以增强他们的信心。

四、教学进度表(略)


七年级数学教案 篇七

一、教学目标

1、知识目标:掌握数轴三要素,会画数轴。

2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

3、情感目标:向学生渗透数形结合的思想。

二、教学

教学:数轴的三要素和用数轴上的点表示有理数。

教学难点:有理数与数轴上点的对应关系。

三、教法

主要采用启发式教学,引导学生自主探索去观察、比较、交流。

四、教学过程

(一)创设情境激活思维

1。学生观看钟祥二中相关背景视频

意图:吸引学生注意力,激发学生自豪感。

2。联系实际,提出问题。

问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

师生活动:学生思考解决问题的方法,学生代表画图演示。

学生画图后提问:

1。马路用什么几何图形代表?(直线)

2。文中相关地点用什么代表?(直线上的点)

3。学校大门起什么作用?(基准点、参照物)

4。你是如何确定问题中各地点的位置的?(方向和距离)

设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的首要次数学抽象。

问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

师生活动:

学生思考后回答解决方法,学生代表画图。

学生画图后提问:

1。0代表什么?

2。数的符号的实际意义是什么?

3。—75表示什么?100表示什么?

设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

问题3:生活中常见的温度计,你能描述一下它的结构吗?

设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

问题4:你能说说上述2个实例的共同点吗?

设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

(二)自主学习探究新知

学生活动:带着以下问题自学课本第8页:

1。什么样的直线叫数轴?它具备什么条件。

2。如何画数轴?

3。根据上述实例的经验,“原点”起什么作用?

4。你是怎么理解“选取适当的长度为单位长度”的?

师生活动:

学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

至此,学生已会画数轴,师生共同归纳总结(板书)

①数轴的定义。

②数轴三要素。

练习:(媒体展示)

1。判断下列图形是否是数轴。

2。口答:数轴上各点表示的数。

3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。

(三)小组合作交流展示

问题:观察数轴上的点,你有什么发现?

数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

(四)归纳总结反思提高

师生共同回顾本节课所学主要内容,回答以下问题:

1。什么是数轴?

2。数轴的“三要素”各指什么?

3。数轴的画法。

设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

(五)目标检测设计

1。下列命题正确的是()

A。数轴上的点都表示整数。

B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C。数轴包括原点与正方向两个要素。

D。数轴上的点只能表示正数和零。

2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

五、板书

1。数轴的定义。

2。数轴的三要素(图)。

3。数轴的画法。

4。性质。

六、课后反思

附:活动单

活动一:画一画

钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

活动二:读一读

带着以下问题阅读教科书P8页:

1。什么样的直线叫数轴?

定义:规定了_________、________、_________的直线叫数轴。

数轴的三要素:_________、_________、__________。

2。画数轴的步骤是什么?

3。“原点”起什么作用?__________

4。你是怎么理解“选取适当的长度为单位长度”的?

练习:

1。画一条数轴

2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5

活动三:议一议

小组讨论:观察你所画的数轴上的点,你有什么发现?

归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

练习:

1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

2。距离原点距离为5个单位的点表示的数是________。

3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

附:目标检测

1。下列命题正确的是()

A。数轴上的点都表示整数。

B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

C。数轴包括原点与正方向两个要素。

D。数轴上的点只能表示正数和零。

2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

3。画数轴,观察数轴,在原点左边的点有_______个。

4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。


七年级数学教案 篇八

一、课题

2.1数怎么不够用了(2)

二、教学目标

1.使学生理解有理数的意义,并能将给出的有理数进行分类;

2.培养学生树立分类讨论的思想。

三、教学和难点

难点

有理数包括哪些数.

有理数的分类及其分类的标准.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有的认知结构提出问题

1.什么是正、负数?

2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

3.任何一个正数都比0大吗?任何一个负数都比0小吗?

4.什么是整数?什么是分数?

根据学生的回答引出新课.

(二)、讲授新课

1.给出新的整数、分数概念

引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

2.给出有理数概念

整数和分数统称为有理数,即

有理数是英语“Rational number”的译名,更确切的译名应译作“比

3.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充.

教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

(三)、运用举例 变式练习

例1

将下列数按上述两种标准分类:

例2

下列各数是正数还是负数,是整数还是分数:

课堂练习

25、-100按两种标准分类.

2、下列各数是正数还是负数,是整数还是分数?

(四)、小结

教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

七、练习设计

1.把下列各数填在相应的括号里(将各数用逗号分开):

正整数集合:{ …};

负整数集合:{ …};

正分数集合:{ …};

负分数集合:{ …}.

2.填空题:

的数是______,在分数集合里的数是______;

(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

3.选择题

(1)-100不是

A.有理数 B.自然数 C.整数 D.负有理数

(2)在以下说法中,正确的是[ ]

A.非负有理数就是正有理数

B.零表示没有,不是有理数

C.正整数和负整数统称为整数

D.整数和分数统称为有理数

八、板书设计

2.1数怎么不够用了(2)

(一)知识回顾 (三)例题解析 (五)课堂小结

(二)观察发现 例1、例2

(四)课堂练习 练习设计

九、教学后记

在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

1.分类的标准不同,分类的结果也不相同;

2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.


七年级数学教案 篇九

首要章教学评价指导

一、总体设计思路:

1、通过观察现实生活中的物体,认识基本几何体及点、线、面。

2、通过展开与折叠活动,认识棱柱的基本性质。

3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。

4、通过平面图形与空间几何体相互转换的活动过程中,建立空间观念,发展几何直觉。

5、由空间到平面,认识常见的平面图形.

——观察、操作、描述、想象、推理、交流.

二、总体教学建议:

1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形.

2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。

其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。

3、教学中应有意识地满足多样化的学习需要,发展学生的个性。

如开展正方体表面展开、棱柱模型制作等教学。

几点说明:

1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?

2、教学中要处理好动手操作和思考想象的关系?

3、生活中的立体图形性质的认识过程

用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。

4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)

三、总体评价建议

1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。

2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。

3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。

4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。

四、每一节的教学目标、、教学建议与评价方法

首要节:生活中的立体图形

首要课时:

教学目标:

1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。

2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。

3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。

:图形的识别。

难点:图形的分类。

教学建议:

1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;

2.这里对图形的认识是初步的,不必给予准确定义。

评价建议:

1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从现实世界中发现图形;

2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何体,并能用自己的语言描述它们的特征。

第二课时:

教学目标:

1.通过大量的实例, 丰富对点、线、面的认识;

2.体会点、线、面之间的关系。

3.会识别平面和曲面、直线和曲线;

4.了解“点动成线”、“线动成面”、“面动成体”的现象。

点、线、面的认识。

难点:用运动的观点描述它们的形成过程。

教学建议:

1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;

2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。

评价建议:

1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。

2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。

第二节:展开与折叠

首要课时:

教学目标:

1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;

2.在操作活动中认识棱柱的某些特性;

3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。

:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的

思维方法

难点:正确判断哪些平面图形可折叠为棱柱

教学建议:

1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;

2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;

3.想一想应让学生先猜想说明理由后再操作确认;

4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。

评价建议:

1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。

2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性解决图形折叠的某些问题。

第二课时:

教学目标:

1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,进而会把棱柱表面展开成平面图形;

2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;

3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几何体表面转换的过程中,初步建立空间观念,发展几何直觉。

:会把正方体表面展开成平面图形。

难点:按照预定的形状把正方体展开成平面图形。

教学建议:

1.对棱柱的各种展开方式不必求全;

2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。

评价建议:

1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生制作长方体、正方体、圆柱和圆锥等几何体的模型。

2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展开图。

第三节:截一个几何体

教学目标:

1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;

2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;

3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。

:理解截面的含义。

难点:根据所给的条件做出它的截面。

教学建议:

1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;

2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。

评价建议:

1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维能力的培养。

2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。

第四节:从不同的方向看

首要课时:

教学目标:

1.学生经历从不同方向观察几何物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;

2.能识别简单物体的三视图,体会物体三视图的合理性;

3.会由实物画立方体及其简单组合的三视图;

4.渗透图形的二维空间与三维空间的转换。

体会从不同方向看同一物体可能看到不同的结果。

难点:能画立方体及其简单组合的三视图。

教学建议:

1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;

2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。

评价建议:

1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看可能看到不同的图形。关注学生用语言清晰表达自己思维过程的能力的培养。

2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是不同的。正确认识三视图的意义。

第二课时:

教学目标:

1.会画由正方体组成的较复杂图形的各视图;

2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图和左视图;

3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。

:根据主视图、左视图、俯视图相象出实物图形。

难点:确定组合体中小立方块的个数。

教学建议:

1.做一做部分建议按先摆、再看、后画的方式进行处理;

2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。

评价建议:

1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观察、想象、交流等活动中的主动参与程度。

2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正确画出主视图和左视图。

第五节:生活中的平面图形

教学目标:

1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;

2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;

3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;

4.在丰富的活动中发现有条理的思考。

多边形、弧、扇形的概念。

难点:把复杂图形转化为简单图形的方法。


七年级数学教案 篇十

一、总体说明

数学是为生活服务的。本单元解决问题,就是要培养学生运用数学知识解决问题的能力。主要内容包括用乘法计算解决问题和运用除法计算解决问题。是在学生已经掌握了运用乘法和除法一步解决问题的基础上,进一步学习和掌握需要两、三步计算解决问题。教材通过实际生活联系非常紧密、贴近度很高的生动例子,让学生先从直观的图画中了解信息,再运用了解的信息来解决问题,既培养了学生了解分析信息的能力,也提高了学生解决问题的能力。

二、教学目标

(1)使学生掌握运用乘法计算或除法计算来解决问题的思路和方法,

(2)培养学生了解信息和分析信息的能力,提高解决问题的能力

(3)通过生动的实例,让学生体验解决问题的成功感,培养学习数学的兴趣。

(4)结合适当的教材内容对学生进行思想道德教育。

三、教学设想

学习数学的目的就是要能运用数学来解决日常生活中的实际问题在本单元的教学中,先让学生自己观察图画,了解和收集图画中的信息,再运用所学的知识,根据信息在小组中讨论、合作交流,解决问题,然后让学生解决问题后总结和归纳生活中一般性的规律,提高解决问题的能力。

本单元建议用5课时安排教学。数学广角(单元教案)

四、总体说明

本单元的知识内容是通过解决生活中的实际问题,扩展学生的思维,开发学生的智力。主要内容包括:统计中的重复问题和等式中实物代换问题两种类型。是在学生学习了统计和等式的基础上,进一步理解统计中出现的重复现象和等式中通过实物进行代换问题。通过运用集合的思想和等量代换思想解决实际问题。体现了数学与生活的联系。

五、教学目标

(1)理解统计中出现的重复现象,运用集合图推算事物的数量。

(2)通过实物代换,初步理解代换思想,推算事物的数量。

(3)扩展学生的思维,开发学生的智力。

六、教学设想

根据奉单元知识内容相对比较抽象和学生的思维能力水平的特点。在教学中主要采用实物分析的方法进行教学.先让学生能通过实物理解重复现象和代换思想,再通过适当的练习加强学生的思维训练。使学生能充分理解,并能解决一些实际问题。

点击查看更多问答中心资讯
热门搜索
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码