《多边形的内角和》教案【优秀5篇】
《多边形的内角和》教案 篇一
下面是初一数学说课稿《多边形的内角和》,仅供参考!
《多边形的内角和》说课稿
各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是<义务教育课程标准实验教科书>人教版,七年级下册第七章第三节的内容,分两课时,我今天说的是第二课时。对本节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计、教学评价设计六个方面进行阐述。
一、背景分析
1、 学习任务分析:
《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习 镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的。
2、学生情况分析:
(1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。
(2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。
二、教学目标设计
依据新课标的要求,我设计本节课的教学目标为以下四个方面:
知识与技能:
通过实验探索多边形内角和公式。
数学思考:
1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。
解决问题:
通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。
情感态度:
通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。
三、课堂结构设计
整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。
四、教学媒体设计
七年级学生思维活跃,容易接受新鲜事物,对直观的东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。
五、教学过程设计:
1、创设情景:
我设计了两个情景:
情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。
情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。也易于学生接受。
2、建立模型:
活动1:
猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。
议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”——即通过添加辅助线的方法,把四边形分割成三角形。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。
想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。
活动2:
选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的理想方法的能力。
活动3:
想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于以下不同形式的公式
①(n-2)•180° ②180°•n-360° ③180°•(n-1)- 180°
通过任意多边形转化为三角形的过程,发展学生的空间想象能力。通过多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。在探索的过程中,再一次发展学生的推理能力和表达能力,在交流与合作的过程中,感受合作的重要性。
3、解释与应用
(1)智慧大比拼。通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。目的是检验学习,让学生经历运用知识解决问题的过程,发展学生的推理能力和语言表述能力,给学生获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。
(2)情系奥运。引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。
4、拓展与探究
小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。
5、反思与作业
请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
六、教学评价设计:
学生学习水平评价:学生是否积极参与;是否独立思考;是否富于想象;是否敢于否定;是否兴趣浓厚;是否善于合作;能否主动探索;能否自由表达。
学生学习评价:通过解释与应用,拓展与探究两个环节初步了解部分学生对本节知识的掌握情况,课后通过分层次作业,三天后进行的小试试,了解学生对本节内容的掌握情况,及时发现问题,对教学中的疏漏进行弥补。
教师在教学过程中要及时根据学生回答,让学生之间进行互评,反馈,同时对于不同层次的学生和不同难度问题,教师要及时的给予反馈和评价。另外,通过学生评价自己和他人的表现,教师也要进行自我反思。
《多边形的内角和》教案 篇二
一、教材分析
1、教材的地位和作用
本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。
2、教学和难点
:多边形的内角和与外角和
难点:探索多边形内角和时,如何把多边形转化成三角形。
二、教学目标分析
1、知识与技能:掌握多边形的内角和与外角和,进一步了解转化的数学思想。
2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。
3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
4、情感态度:让学生体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。
三、教法和学法分析
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观,提高课堂效率。
四、教学过程分析
五、评价分析
1、注意评价内容的多元化
通过课堂中学生展示自己对所学内容的理解,交流对某一问题的看法,动手操作的表演,各种问题尝试解答等活动,使教师从学生思维活动、有关内容的理解和掌握,以及学生参与活动的程序等多层面地了解学生。
2、注重对学生学习过程的评价
在整个教学过程中,通过对学生参与数学活动的程度、自信心、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生中出现的独特的想法或结论给予鼓励性评价。
六、设计说明
1、指导思想
根据义务教育阶段数学课程的要求,结合教材的编写意图,在本节课设计时,我遵循以下原则:情境引入激发兴趣,学习过程体现自主,知识建构循序渐进,思想方法有机渗透。
2、关于教材处理
本教案设计时,我对教材作了如下改变:①将教材例1作为练习中的“想一想”,由学生自已尝试解答;②将例2中的求“六边形”的外角和,改为练习中的“算一算”,先让学生求“四边形”的外角和,再探索“五边形、六边形,以及n边形的外角和”。这样处理仍然是为了体现学生的自主探索,使学生学习变“被动”为“主动”。
③作业采组的形式合作完成。这样,在情感上,本节课学生由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学活动,使学生的学习激情得到释放,学科个性得以张扬,教师可稍加点拨,适可而止,把更多的思考空间留给学生。
以上是我对本节课的设计说明,不足之处,请各位指正,谢谢!
《多边形的内角和》教案 篇三
一、素质教育目标
(一)知识教学点
1.使学生把握四边形的有关概念及四边形的内角和外角和定理。
2.了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力练习点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2.通过推导四边形内角和定理,对学生渗透化归思想。
3.会根据比较简单的条件画出指定的四边形。
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、·难点·疑点及解决办法
1.教学:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具预备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
首要课时
七、教学步骤
复习引入
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
引入新课
用投影仪打出课前画好的教材中p119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).
讲解新课
1.四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.
(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.
2.四边形内角和定理
教师问:
(1)在图4-3中对角线ac把四边形abcd分成几个三角形?
(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?
(3)若在四边形abcd 如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180°,那么四边形的内角和就等于:
①2×180°=360°如图4—6;
②4×180°-360°=360°如图4-7.
例1 已知:如图4—8,直线 于b、 于c.
求证:(1) ; (2) .
本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出。
总结、扩展
1.四边形的有关概念。
2.四边形对角线的作用。
3.四边形内角和定理。
八、布置作业
教材p128中1(1)、2、 3.
九、板书设计
四边形(一)
四边形有关概念
四边形内角和
例1
十、随堂练习
教材p122中1、2、3.
《多边形的内角和》教案 篇四
7.3.2 《多边形的内角和》教案
教 学 任 务 分 析
教
学
目
标 知识目标了解多边形的内角和与外角和公式,进一步了解转化的数学思想
能力目标
1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。
3、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。
情感情感通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。
探索多边形的内角和及外角和公式
难点如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。
教 学 流 程 安 排
活 动 流 程活 动 内 容 和 目 的
活动1 回顾三角形内角和,引入课题回顾三角形内角和知识,激发学生的学习兴趣,为后继问题解决作铺垫。
活动2 探索四边形内角和鼓励学生寻找多种分割形式,深入领会转化的本质—将四边形转化为三角形问题来解决。
活动3 探索五边形内角和,推导出任意多边形内角和公式通过类比得出方法,探索多边形内角和公式,体会数形间的联系,感受从特殊到一般的思考问题的方法。
活动4 探索六边形及n边形外角和通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。
活动5 多边形内角和与外角和公式的运用综合运用所学知识去解决问题。
活动6 归纳总结,布置作业小结及课后探究习题梳理所学知识,达到巩固,发展提高的目的。
教 学 过 程 设 计
问 题 与 情 况师 生 行 为设 计 意 图
活动1
问题:你知道三角形的内角和是多少度吗?
a
b c
三角形的内角和等于180°
课题:多边形的内角和与外角和1、教师提问,学生思考作答。
2、教师总结:三角形的内角和等于180°。
3、引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和与外角和。回顾已学知识:三角形的内角和等于180°,为后继问题的解决作铺垫。
利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去。
活动2
问题:你知道任意一个四边形的内角和是多少吗?
学生展示探究成果
a
d
b c
分成2个三角形
180°×2=360°
d
a
o
b c
分割成4个三角形
180°×4-360°=360°
a
d
b p c
分割成3个三角形
180°×3-180°=360°1、引导学生猜想:四边形的内角和等于360°。
2、学生分小组交流与探究,进一步来论证自己的猜想。
3、由各小组成员汇报探索的思路与方法,讲明理由。
4、教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。
5、教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。教师可点拨学生从正方形、长方形这两个特殊的多边形的内角和,进而猜测出四边形的内角和等于360°。
“解放学生的手,解放学生的大脑”,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。
鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。
活动3
问题1:你知道五边形的内角和是多少度吗?
a e
b
d
c
a e
o
b d
c
a e
b
d
p
c
问题2:你知道n边形的内角和吗?
(n-2)·180°
180°n-360°
180°(n-1)-180°
板书:
多边形内角和公式:(n-2)·180°
例:求15边形内角和的度数1、教师提出问题,学生思考后分组活动。
2、教师深入小组,参与小组活动,及时了解学生探索的情况。
3、让学生归纳借助辅助线将五边形分割成三角形的不同分法。
4、探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。
5、根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。
6、通过计算让学生巩固并掌握n边形内角和公式。通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进一步体现新课标“以人为本”的思想,再一次发展学生的平理能力和语言表达能力。
通过四边形、五边形特殊,多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。
活动4
问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点a,他的身体旋转了多少度?
例:六边形外角和等于多少度?
e 4 d
5
f 3 c
6
2
a 1 b
问题2:n边形外角和等于多少度?
n边形外角和等于360°1、学生思考作答,教师作适当点拨。通过课件演示,由学生发现:六边形的外角和等于360°。
2、教师引导学生利用多边形的内角和公式,进一步论证六边形外角和等于360°。即:六个平角减去六边形内角和等于六边形外角和360°
3、进行类比推理并小结:n边形外角和等于n个平角减去n边形内角和,与边数无关。
180°n-(n-2)·180°=360°经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。
通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。
活动5
问题:你能运用多边形内角和与外角和公式解决问题吗?
(1)教科书p88 例1
(2)求下列图中x值
150 °2x°
120 °
x°
80 °
120 °
75 ° x°
(3)一个多边形的内角和与外角和相等,它是几边形?
探究题:小明有一个设想:XX年奥运会在北京召开,他设计一个内角和是°的多边形图案多有意义,小明的想法能实现吗?1、学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。
2、教师从学生的回答中,了解学生有条理表达自己的思考过程。
3、引导学生利用多边形的内角和公式解释小明的设想能否实现,进一步让学生感受到数学的趣味性,以及与实际生活间的密切联系。学生自主探索巩固知识和获得技能,掌握基本的数学思想。
教师及时了解学生的学习,让学生经历用知识解决问题的过程。
同时激发学生的学习和积极性,建立学好数学的自信心。学生巩固、发展、提高。
活动6
问题:谈谈本节课你有哪些收获?
作业:课本p90.2 p90.61、学生反思学习和解决问题的过程。
2、鼓励学生大胆表达,并对学生的进步给予肯定,树立学生学好数学的自信心。通过回顾和反思,让学生看到自己的进步,激励学生,使学生自己在今后的学习中会不断进步,提高学生的学习热情。
《多边形的内角和》教案 篇五
一、素质教育目标
(一)知识教学点
1.使学生把握四边形的有关概念及四边形的内角和外角和定理。
2.了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力练习点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2.通过推导四边形内角和定理,对学生渗透化归思想。
3.会根据比较简单的条件画出指定的四边形。
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、·难点·疑点及解决办法
1.教学:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具预备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第2课时
七、教学步骤
复习提问
1.什么叫四边形?四边形的内角和定理是什么?
2.如图4-9, 求 的度数(打出投影).
引入新课
前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。
讲解新课
1.四边形的外角
与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的。四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.
2.外角和定理
例1 已知:如图4-11,四边形abcd的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .
求 .
(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).
(2)教给学生一组外角的画法——同向法。
即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和。
(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.
证得:
360°
外角和定理:四边形的外角和等于360°
3.四边形的不稳定性
①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?
(学生回答)
②若以 为边作四边形abcd.
提示画法:①画任意小于平角的 .
②在 的两边上截取 .
③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d点。
④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.
大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为 的大小不固定,所以四边形的外形不确定。
③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性。
教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:
①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变。②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据。
(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育。
总结、扩展
1.小结:
(1)四边形外角概念、外角和定理。
(2)四边形不稳定性的应用和克服不稳定性的理论根据。
2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积
八、布置作业
教材p128中4.
九、板书设计
十、随堂练习
教材p124中1、2
补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则 度。
(2)在四边形abcd中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度
(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角。
- ·上一篇:电子实习总结通用4篇
- ·下一篇:纺织实习报告优秀9篇