学好网首页

中小学辅导教育平台

400 966 0702

服务时间:7:00-23:00

当前位置:学好网 > 问答中心 > 问答中心

多边形的内角和与外角和教案 初中数学多边形内角和教案优秀3篇

文章来源: 管理员 作者: yongbin 发布时间:2023-06-13 01:02:09 阅读:

七年级数学下册《多边形的内角和》教案 黑龙江省宾县宾西镇第二中学 杨显英 设计理念: 众所周知,数学课堂是以学生为中心的活动的课堂。通过动手实践、自主探索、合作交流的过程,达到知识的构建,能力的培养和意识的创新及情感的陶冶。这也是实现数学教育从“文本教育”回归到“人本教育”。为此,就《多边形的内角和》这一课题,我创造性的使用教材,从七个方面说一下我的教学设想。 一教材分析: 从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌以下是人见人爱的小编分享的多边形的内角和与外角和教案 初中数学多边形内角和教案优秀3篇,希望能够帮助到大家。


多边形的内角和与外角和教案 初中数学多边形内角和教案 篇一

1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。

2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题。

3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。

1.:多边形的内角和公式

2.难点:多边形内角和的推导

3.关键:.多边形"分割"为三角形。

三角板、卡纸

1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

1、回顾旧知,引出问题:

(1)三角形的内角和等于_________.外角和等于____________

(2)长方形的内角和等于_____,正方形的内角和等于__________.

2、探索四边形的内角和:

(1)学生思考,同学讨论交流。

(2)学生叙述对四边形内角和的认识(首要二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的突破口。

(3)引导学生用"分割法"探索四边形的内角和:

方法一:连接一条对角线,分成2个三角形:

180°+180°=360°

从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。

180°×4-360°=360°

3、探索多边形内角和的问题,提出阶梯式的问题:

你能尝试用上面的方法一求出五边形的内角和吗?(首要二组)

你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

n边形3456...n分成三角形的个数1234...n-2内角和。4、及时运用,掌握新知:

(1)一个八边形的内角和是_____________度

(2)一个多边形的内角和是720度,这个多边形是_____边形

(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和

运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

4、第83页练习1和2多边形内角和定理的应用

课堂小结提问方式:本节课我们学习了什么?

1多边形内角和公式

2多边形内角和计算是通过转化为三角形

1、书面作业:

2、课外练习:


多边形的内角和与外角和教案 初中数学多边形内角和教案 篇二

(1)知识结构:

(2)和难点分析:

:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。

难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入超卓使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想。

教学:

四边形的内角和定理。

教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四【WWW.BAIHUAWEN.CN】边形和梯形的有关知识。请同学们回忆一下这些图形的概念。找学生说出四种几何图形的概念,教师作评价。

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件。(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形。

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下。其次,要给学生讲清楚“首尾”和“顺次”的含义。

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念。

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序。

练习:课本124页1、2题。

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了。

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决。

(五)应用、反思

例1 已知:如图,直线 ,垂足为b, 直线 , 垂足为c.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

练习:

1.课本124页3题。

2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

知识:四边形的有关概念及其内角和定理。

能力:向学生渗透类比和转化的思想方法。

作业: 课本130页 2、3、4题。


多边形的内角和与外角和教案 初中数学多边形内角和教案 篇三

知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;

过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力。

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

教学:多边形外角和定理的探索和应用。

教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透。

教学准备:多媒体课件

首要环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?

第二环节 问题解决(10分钟,小组讨论,合作探究)

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点o分别作与五边形abcde各边平行的射线oa′,ob′,oc′,od′,oe′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

这样,∠1+∠2+∠3+∠4+∠5=360°

问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗?

2.如果广场的形状是八边形呢?

第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。

探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;

方法ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。

结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?

(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?

第四环节 巩固练习(10分钟,学生利用知识独立解决问题)

例1一个多边形的内角和等于它的外角和的3倍,它是几边形?

随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形?

2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?

挑战自我:

1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?

挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。

第五环节 课时小结(3分钟,学生加深记忆)

多边形的外角及外角和的定义;

多边形的外角和等于360°;

在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想。

第六环节 布置作业:

习题4.11

a组(优等生)第1,2,3题

b组(中等生)1、2

c组(后三分之一生)1

点击查看更多问答中心资讯
热门搜索
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码