学好网首页

中小学辅导教育平台

400 966 0702

服务时间:7:00-23:00

当前位置:学好网 > 问答中心 > 问答中心

圆柱体积教案优秀6篇

文章来源: 管理员 作者: yongbin 发布时间:2023-06-07 23:02:29 阅读:

作为一位兢兢业业的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。来参考自己需要的教案吧!这次漂亮的小编为您带来了圆柱体积教案优秀6篇,如果对您有一些参考与帮助,请分享给超卓的朋友。


《圆柱的体积》的教学设计 篇一

教学目标:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

教学重、难点:掌握圆柱体积公式的推导过程。

教学流程:

一、复习引入

1、什么是体积?

2、怎样计算长方体和正方体的体积?

3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。

二、活动导学、精讲点拨

1、观察比较,建立猜想

引导学生观察例4的三个立体图形,提问:

⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?

⑵ 长方体和正方体的体积一定相等吗?为什么?

⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

2、实验操作

(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。(等于底面积乘高)。

大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。那用什么办法验证呢?请独立思考。

(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?

(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?

(3)指名两位同学上台操作教具,让学生观察。

师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。

(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。)

演示一组动画(将圆柱底面等分成32份、64等份……)课件演示。问:和你的想象一样吗?使学生清楚地认识到:拼成的立体图形会越来越接近长方体。

3、观察比较,推导公式

(1)提问:拼成的长方体与原来的圆柱有什么关系?出示讨论题。

a、拼成的长方体的底面积与原来圆柱的底面积有什么关系?

b、拼成的长方体的高与原来圆柱的高有什么关系?

c、拼成的长方体的体积与原来圆柱的体积有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

(2)想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式:

圆柱的体积=底面积×高

(3)如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么,圆柱的体积计算公式你能写出来吗?试试看。

指名同学到黑板板书:v=sh

我们发现圆柱拼成长方体后体积,底面积,高没有变,那什么变了呢?

指名回答。(形状变了;表面积变大)

4、回顾反思

回顾圆柱体积公式的探索过程,你有什么体会?

三、练习运用、迁移创新

1、做练习三第1题。

让学生口头列式并完成填表。问:要求体积必须知道底面积和高吗?

2、教学“试一试”。

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

3、做“练一练”第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

4、做“练一练”第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生先根据底面周长求出底面积。

5、做练习三第2题。

学生读题后,提问:计算电饭煲的容积,为什么要从里面量尺寸?

6、拓展题

把一个高是20厘米的圆柱切拼成一个近似的长方体,表面积比原来增加了200平方厘米,圆柱的体积是多少立方厘米?

四、课堂小结

这节课我们学习了什么?有哪些收获?还有什么疑问?


《圆柱的体积》的教学设计 篇二

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(学生互相讨论后汇报,教师设疑)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

2、巩固反馈

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的 2/3, 计算水杯中水的体积?

5、拓展练习

(1)、 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、 一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

四、全课小结:

谈谈这节课你有哪些收获。

教学内容:人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

教学目标:

1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程


《圆柱的体积》的教学设计 篇三

教材分析

1、《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,

2、本节核心内容的功能和价值,为下一步学习“圆锥的体积”打下基础。

学情分析

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

教学目标

1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学和难点

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

教学过程

教学过程:

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

(4)说一说长方体体积的计算公式。

2、创设问题情景。

如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)

二、新课教学:

设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

1、探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。

①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)


《圆柱的体积》的教学设计 篇四

【教学过程】

一、揭示课题,确定目标

谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)

启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)

引导:

(1)什么是圆柱的体积?

(2)圆柱的体积和什么有关?

(3)圆柱的体积公式是怎样推导出来的?

(4)圆柱的体积是怎样求出来的?

(5)学习圆柱的体积公式有什么用?

谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小

谈话:这堂课我们主要解决三个问题:(出示探究问题)

1、圆柱的体积和什么有关?

2、这个公式是怎样推导出来的?

3、学习了圆柱的体积能解决什么实际问题?

【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本

1、提出问题

谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?

引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长

统一为:长方体或正方体的体积=底面积×高

谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?

引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?

引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想

谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)

引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本

谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?

启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)

引导:我们用图形转化的方法,求圆柱的体积。

谈话:这个办法很好。那么把圆柱转化成什么图形呢?

引导:长方体。

谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。

(用多媒体演示圆形的转化过程,边出示、边交流)

【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。

三、合作交流 发展能力

谈话:同学们观察一下,拼成的是什么图形?

引导:近似的长方体。

启发:说得很好,为什么说是近似的长方体,哪里不太像?

引导:长都是许多弧线组成,不是直的。

谈话:这里我们把圆柱分成16等分,还能分吗?

谈话:究竟能分多少份呢?

引导:份,可以永远分下去。

谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。

四、师生合作 归纳结论

谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?

汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。

谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。

汇报:

(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。

(2)转化后的近似长方体的高与原来的圆柱体的高相等。

因为:长方体的体积=底面积×高

所以:圆柱的体积 =底面积×高

(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)

长方体的体积=底面积×高

圆柱的体积 =底面积×高

交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)

引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。

现在请同学们把圆柱体积公式的推导过程再完整地说一遍。

谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。

通过分一分、拼一拼我们把圆柱转化成了近似的长方体。

通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。

【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。


《圆柱的体积》数学教案 篇五

教学内容:

P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

教学:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

长方体和圆柱体的底面积和体积有怎样的关系?

学生说演示过程,总结推倒公式。

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的`高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)


《圆柱的体积》的教学设计 篇六

一、教学对象及学习内容特点分析:

圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。

二、教学目的:

学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。

学生能应用圆柱体积公式进行圆柱体积的计算。

学生能利用知识之间相互"转化"的思想探索解决新的问题。

三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。

四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。

五、教学过程的设想和点评

教师的教学行为学生的学习行为点评

首要阶段:创设情景,设疑引趣。

教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。

提问:小组讨论寻找解决这两个圆柱体积大小的方法。

1、学生小组讨论解决的方法。

2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

第二阶段: 自主探究。概括规律

1、电脑提供学生探索资源:

(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。

(2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。

2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法

2、学生通过观察圆柱公式的推导过程。

3、小组讨论填写实验报告。

4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。

圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

第三阶段:拓展公式,自能训练。

1、公式拓展。

在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

3、质疑

1、学生可根据已学的"圆的面积"公式导出。

(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

2、判断。并说明原因

(1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。

(2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。

(3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3

1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

第四阶段:反馈学习、应用提高。

1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。

2、小结练习情况,及时表扬对而快的同学及小组

3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。

1、赛车游戏:看谁跑得快。

(1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。

(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。

(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。

(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。

2、提高练习。考你智慧:看谁攀得高。

(1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。

(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。

在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

六、归纳总结、自我评价。

1、提出要求,学生谈收获。

2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

七、对教学过程的设想和点评:

新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。

新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。

网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。

点击查看更多问答中心资讯
热门搜索
免费预约试听

免费预约成功后,将获得免费试听课程

联系电话
短信验证码